2021年湖南科技學(xué)院專升本市場(chǎng)營銷專業(yè)《應(yīng)用數(shù)學(xué)》科目考試大綱

瀏覽次數(shù):次 發(fā)布時(shí)間:2022-01-14

【摘要】為了幫助準(zhǔn)備參加專升本考試的考生取得一個(gè)優(yōu)異的成績(jī),考上一所理想的大學(xué),下面小編給考生整理了2021年湖南科技學(xué)院專升本市場(chǎng)營銷專業(yè)《應(yīng)用數(shù)學(xué)》科目考試大綱,希望對(duì)考生有所幫助。

【課程名稱】應(yīng)用數(shù)學(xué)

【課程類別】學(xué)科基礎(chǔ)課程

【適用專業(yè)】經(jīng)管類各專業(yè)

一、課程簡(jiǎn)介

《應(yīng)用數(shù)學(xué)》課程是經(jīng)管類專業(yè)學(xué)生必修的一門公共基礎(chǔ)課。根據(jù)學(xué)生各專業(yè)知識(shí)與日常生活中相關(guān)問題對(duì)應(yīng)用數(shù)學(xué)的需求,將教學(xué)內(nèi)容分為六個(gè)教學(xué)單元,分別為函數(shù)極限與連續(xù)、導(dǎo)數(shù)與微分、導(dǎo)數(shù)的應(yīng)用、不定積分、定積分、常微分方程的求解與應(yīng)用等。每單元的課程結(jié)構(gòu)根據(jù)不同的專業(yè)需求設(shè)置相關(guān)專業(yè)案例,提高學(xué)生應(yīng)用數(shù)學(xué)知識(shí)解決專業(yè)及日常生活問題的能力。

課程模塊都采用專業(yè)常用案例為引例,并以專業(yè)案例為載體,設(shè)計(jì)課堂教學(xué)情境,組織教學(xué)內(nèi)容,使學(xué)生切實(shí)感到數(shù)學(xué)知識(shí)在專業(yè)領(lǐng)域的實(shí)際需要,從而充分激發(fā)學(xué)生的學(xué)習(xí)積極性。通過學(xué)習(xí),學(xué)生能夠根據(jù)實(shí)際問題建立簡(jiǎn)單的函數(shù)關(guān)系式;會(huì)用兩個(gè)重要極限、無窮小求極限;能夠判別間斷點(diǎn)及其類型;會(huì)求初等函數(shù)的導(dǎo)數(shù);會(huì)求復(fù)合函數(shù)的導(dǎo)數(shù);會(huì)求隱函數(shù)的一階導(dǎo)數(shù);能夠熟練運(yùn)用洛必達(dá)法則進(jìn)行極限的計(jì)算;會(huì)用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性及極值;會(huì)利用導(dǎo)數(shù)求解專業(yè)領(lǐng)域最大值和最小值的應(yīng)用問題;能夠熟練利用不定積分的概念與性質(zhì)、換元法與分部積分法進(jìn)行不定積分的計(jì)算;能熟練用定積分的概念與性質(zhì)、換元法與分部積分法進(jìn)行定積分的計(jì)算;能夠熟練運(yùn)用定積分求解幾何學(xué)、物理學(xué)及專業(yè)領(lǐng)域的相關(guān)問題;熟練掌握微分方程的概念、分類,能用微分方程解決專業(yè)及現(xiàn)實(shí)生活中的相關(guān)問題。

課程教學(xué)的主要任務(wù)是培養(yǎng)學(xué)生掌握經(jīng)典數(shù)學(xué)和近代數(shù)學(xué)的基本概念、基本原理及解題方法,掌握當(dāng)代數(shù)學(xué)技術(shù)的基本技能;培養(yǎng)學(xué)生邏輯思維能力、抽象思維能力、數(shù)***算能力、空間想象能力、數(shù)學(xué)應(yīng)用能力及自主學(xué)習(xí)能力,具備用數(shù)學(xué)知識(shí)、思維及方法解釋自然規(guī)律探索自然奧秘的科學(xué)思維能力。

二、考試要求

通過課程學(xué)習(xí),學(xué)生能夠根據(jù)實(shí)際問題建立簡(jiǎn)單的函數(shù)關(guān)系式;會(huì)用兩個(gè)重要極限、無窮小求極限;能夠判別間斷點(diǎn)及其類型;會(huì)求初等函數(shù)的導(dǎo)數(shù);會(huì)求隱函數(shù)的一階導(dǎo)數(shù);能夠熟練運(yùn)用洛必達(dá)法則進(jìn)行極限的計(jì)算;會(huì)用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性及極值;會(huì)利用導(dǎo)數(shù)求解專業(yè)領(lǐng)域最大值和最小值的應(yīng)用問題;能夠熟練利用不定積分的概念與性質(zhì)、換元法與分部積分法進(jìn)行不定積分的計(jì)算;能熟練用定積分的概念與性質(zhì)、換元法與分部積分法進(jìn)行定積分的計(jì)算;能夠熟練運(yùn)用定積分求解幾何學(xué)、物理學(xué)及專業(yè)領(lǐng)域的相關(guān)問題。通過學(xué)習(xí),以提高學(xué)生數(shù)學(xué)文化素質(zhì)和應(yīng)用實(shí)踐能力為主線,數(shù)學(xué)概念力求從數(shù)學(xué)史和實(shí)際問題引出,培養(yǎng)發(fā)現(xiàn)問題、解決問題的數(shù)學(xué)思維以及利用數(shù)學(xué)知識(shí)解決專業(yè)和生活中實(shí)例的能力。

三、考核內(nèi)容

1、章節(jié)目錄

(一)導(dǎo)論

1.數(shù)學(xué)的定義及性質(zhì)

2.數(shù)學(xué)的應(yīng)用領(lǐng)域

3.應(yīng)用數(shù)學(xué)的定義

4. 應(yīng)用數(shù)學(xué)的內(nèi)容體系

(二)函數(shù)、極限與連續(xù)

1.初等函數(shù)及常用的經(jīng)濟(jì)函數(shù);

2.函數(shù)的極限;

3.無窮小量與無窮大量

4.極限的運(yùn)算性質(zhì)與運(yùn)算法則;

5.兩個(gè)重要極限;

6.初等函數(shù)的連續(xù)性。

(三)導(dǎo)數(shù)與微分

1.導(dǎo)數(shù)的概念;

2.求導(dǎo)法則;

3.隱函數(shù)及參數(shù)式函數(shù)的導(dǎo)數(shù);

4. 高階導(dǎo)數(shù)

5. 函數(shù)的微分

(四)導(dǎo)數(shù)的應(yīng)用

1. 微分中值定理;

2. 洛必達(dá)法則;

3. 函數(shù)的單調(diào)性;

4. 函數(shù)的極值;

5. 函數(shù)的最大值和最小值;

6. 曲線的凹凸、拐點(diǎn)與漸近線;

8. 函數(shù)圖像的描繪;

9. 導(dǎo)數(shù)在經(jīng)濟(jì)分析中的應(yīng)用。

(五)不定積分

1. 不定積分的概念和性質(zhì);

2. 換元積分法;

3. 分部積分法。

(六) 定積分及其應(yīng)用

1.定積分的定義及其性質(zhì);

2.定積分的計(jì)算;

3.廣義積分;

4. 定積分的應(yīng)用。

(七)常微分方程及求解(選學(xué)部分內(nèi)容)

1.微分方程的基本概念;

2.可分離變量的微分方程;

3.齊次微分方程;

4. 一階線性微分方程。

2、章節(jié)考試內(nèi)容及考試要求

第一章 導(dǎo)論

掌握數(shù)學(xué)的定義、特點(diǎn)及其應(yīng)用領(lǐng)域,掌握應(yīng)用數(shù)學(xué)的定義及應(yīng)用數(shù)學(xué)的內(nèi)容體系。

第二章 函數(shù)、極限與連續(xù)

1、考試內(nèi)容

函數(shù)的概念及表示法, 函數(shù)的有界性、單調(diào)性、周期性和奇偶性, 反函數(shù),隱函數(shù),分段函數(shù),基本初等函數(shù)的性質(zhì)及其圖形,復(fù)合函數(shù),初等函數(shù),簡(jiǎn)單應(yīng)用問題的函數(shù)關(guān)系的建立。

數(shù)列極限與函數(shù)極限的定義及其性質(zhì),函數(shù)的左極限與右極限,無窮小和無窮大的概念及其關(guān)系,無窮小的性質(zhì)及無窮小的比較,等價(jià)無窮小代換定理,極限的四則運(yùn)算,極限存在的兩個(gè)準(zhǔn)則:?jiǎn)握{(diào)有界準(zhǔn)則和夾逼準(zhǔn)則, 兩個(gè)重要極限。

函數(shù)連續(xù)的概念,函數(shù)間斷點(diǎn)的類型, 初等函數(shù)的連續(xù)性, 閉區(qū)間上連續(xù)函數(shù)的性質(zhì)。

2、考試要求

(1)理解函數(shù)的概念,掌握函數(shù)的表示法,會(huì)建立簡(jiǎn)單應(yīng)用問題中的函數(shù)關(guān)系。

(2)了解函數(shù)的有界性、單調(diào)性、周期性和奇偶性。

(3)理解復(fù)合函數(shù)及其分段函數(shù)的概念,了解隱函數(shù)及反函數(shù)的概念。

(4)掌握基本初等函數(shù)的性質(zhì)及其圖形,理解初等函數(shù)的概念。

(5)了解數(shù)列極限和函數(shù)極限(包括左極限和右極限)的概念。

(6)理解無窮小的概念和基本性質(zhì),掌握無窮小的比較方法,掌握等價(jià)無窮小代換定理求極限方法,了解無窮大的概念及其無窮小的關(guān)系。

(7)了解極限的性質(zhì)與極限存在的兩個(gè)準(zhǔn)則,掌握極限四則運(yùn)算法則,掌握并會(huì)應(yīng)用兩個(gè)重要極限。

(8)理解函數(shù)連續(xù)性的概念(含左連續(xù)與右連續(xù)),會(huì)判別函數(shù)間斷點(diǎn)的類型。

(9)了解連續(xù)函數(shù)的性質(zhì)和初等函數(shù)的連續(xù)性,了解閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(有界性、最大值和最小值定理、介值定理)及其簡(jiǎn)單應(yīng)用。

第三章 導(dǎo)數(shù)與微分

1、考試內(nèi)容

導(dǎo)數(shù)的概念,導(dǎo)數(shù)的幾何意義,函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系,導(dǎo)數(shù)的四則運(yùn)算,基本初等函數(shù)的導(dǎo)數(shù),復(fù)合函數(shù)、反函數(shù)和隱函數(shù)的導(dǎo)數(shù),參數(shù)方程的導(dǎo)數(shù),高階導(dǎo)數(shù), 微分的概念和運(yùn)算法則.

2、考試要求

(1)理解導(dǎo)數(shù)的概念及可導(dǎo)性與連續(xù)性之間的關(guān)系,理解導(dǎo)數(shù)的幾何意義。

(2)掌握基本初等函數(shù)的導(dǎo)數(shù)公式、導(dǎo)數(shù)的四則運(yùn)算法則及復(fù)合函數(shù)的求導(dǎo)法則,掌握反函數(shù)與隱函數(shù)求導(dǎo)法,掌握取對(duì)數(shù)求導(dǎo)法,掌握參數(shù)方程的導(dǎo)數(shù)(一階導(dǎo)數(shù))。

(3)了解高階導(dǎo)數(shù)的概念,會(huì)求簡(jiǎn)單函數(shù)的高階導(dǎo)數(shù)。

(4)了解微分的概念,導(dǎo)數(shù)與微分之間的關(guān)系,會(huì)求函數(shù)的微分。

第四章 導(dǎo)數(shù)的應(yīng)用

1、考試內(nèi)容

羅爾定理和拉格朗日中值定理及其應(yīng)用,洛必達(dá)(L'Hospital)法則 函數(shù)單調(diào)性, 函數(shù)的極值,函數(shù)圖形的凹凸性、拐點(diǎn)及漸近線、函數(shù)的最大值和最小值。

2、考試要求

(1)理解羅爾定理和拉格朗日中值定理、掌握這兩個(gè)定理的簡(jiǎn)單應(yīng)用。

(2)會(huì)用洛必達(dá)法則求極限。

(3)會(huì)用導(dǎo)數(shù)判斷函數(shù)圖像的凹凸性、會(huì)求函數(shù)圖形的拐點(diǎn),

(4)會(huì)用極限判斷函數(shù)圖像的漸進(jìn)線。

(5)掌握函數(shù)單調(diào)性的判別方法及其應(yīng)用,掌握函數(shù)極值、最大值和最小值的求法,會(huì)求解較簡(jiǎn)單的應(yīng)用題。

第五章 不定積分

1、考試內(nèi)容

不定積分的概念,基本初等函數(shù)的積分公式,換元積分法,分部積分法。

2、考試要求

(1)理解原函數(shù)與不定積分的概念、幾何意義;

(2)掌握不定積分的基本性質(zhì)、基本的積分公式;

(3)熟練掌握計(jì)算不定積分的兩種換元積分法和分部積分法。

第六章 定積分及其應(yīng)用

1、考試內(nèi)容

定積分的定義及其幾何意義,定積分的性質(zhì),變上限的定積分,牛頓-萊布尼茨公式,換元積分法,分部積分法,廣義積分的概念,定積分在幾何上的應(yīng)用。

2、考試要求

(1)理解定積分的概念及幾何意義,了解函數(shù)可積的條件;

(2)掌握定積分的基本性質(zhì);

(3)掌握對(duì)變上限定積分求導(dǎo)數(shù)的方法;

(4)掌握牛頓-萊布尼茨公式;

(5)掌握定積分的換元積分與分部積分法;

(6)掌握直角坐標(biāo)系下用定積分計(jì)算平面圖形的面積、旋轉(zhuǎn)體的體積的計(jì)算方法。

第七章 常微分方程及求解(選學(xué)部分內(nèi)容)

1、考試內(nèi)容

微分方程的定義、階、解、通解、初始條件和特解,可分離變量的微分方程,一階線性微分方程。

2、考試要求

(1)理解微分方程的定義,理解微分方程的階、解、通解、初始條件的特解;

(2)掌握可分離變量的微分方程的解法;

(3)掌握一階線性微分方程解法。

四、考核形式及試卷結(jié)構(gòu)

(一)考核形式

筆試(閉卷)考試

(二)試卷內(nèi)容結(jié)構(gòu)

1. 導(dǎo)論:約5%

2. 函數(shù)、極限與連續(xù):約20%

3. 導(dǎo)數(shù)與微分:約15%

4. 導(dǎo)數(shù)的應(yīng)用:約20%

5. 不定積分:約15%

6. 定積分及其應(yīng)用:約20%

7. 常微分方程及求解:約5%

(三)試卷題型結(jié)構(gòu)

填空題24分 (8小題,每小題3分)

選擇題30分 (10小題,每小題3分)

計(jì)算題32分 (4小題,每小題8分)

綜合應(yīng)用題14分 (1小題,每小題14分)

五、參考書目

1.建議使用教材:

(1)《應(yīng)用數(shù)學(xué)分析基礎(chǔ)》,葉仲泉著,科學(xué)出版社,2020年。

(2)《應(yīng)用數(shù)學(xué)基礎(chǔ)——微積分、線性代數(shù)和概率統(tǒng)計(jì)(綜合類·應(yīng)用型本科版)》,吳贛昌著,中國人民大學(xué)出版社,2018年。

(3)《經(jīng)濟(jì)應(yīng)用數(shù)學(xué)(第三版)》,馮翠蓮著,高等教育出版社,2020年。

(4)《應(yīng)用數(shù)學(xué)》第一版 ,劉東海著,電子工業(yè)出版社,2020年。

(5)《應(yīng)用數(shù)學(xué)及其應(yīng)用》,劉麗瑤、陳承歡著,高等教育出版社,2015年。

標(biāo)簽:專升本考試大綱

湖南專升本最新資料領(lǐng)取

部分內(nèi)容來源于網(wǎng)絡(luò)轉(zhuǎn)載、學(xué)生投稿,如有侵權(quán)或?qū)Ρ菊居腥魏我庖?、建議或者投訴,請(qǐng)聯(lián)系郵箱(1296178999@qq.com)反饋。 未經(jīng)本站授權(quán),不得轉(zhuǎn)載、摘編、復(fù)制或者建立鏡像, 如有違反,本站將追究法律責(zé)任!


本文標(biāo)簽: 湖南專升本專升本技巧

上一篇:2021年湖南科技學(xué)院專升本市場(chǎng)營銷專業(yè)《管理基礎(chǔ)學(xué)》科目考試大綱                  下一篇:2021年湖南工學(xué)院專升本《安全人機(jī)工程》科目考試大綱

湖南3+2 統(tǒng)招專升本

一鍵查詢